
ShadoCam Imaging Library

Rad-icon Imaging Corp.
Copyright © 2001-2004

P/N 1046 Rev. 02

1

1. Introduction

Thank you for purchasing the ShadoCam Imaging Library (SIL). This manual will guide

you through the installation and use of this library. Our goal is to get you started on the

image acquisition portion of your imaging project, and to help you develop a successful

application.

Overview

The ShadoCam Imaging Library consists of a set of image processing functions that

duplicate portions of Rad-icon's ShadoCam Image Acquisition application. These functions

allow you to perform the same image calibrations that ShadoCam uses, in order to achieve

the best possible image quality from your Shad-o-Box camera.

The ShadoCam Imaging Library does not contain any frame grabber-specific function calls.

Since each frame grabber is different, we decided to keep the SIL as universal as possible

by including only "generic" image processing functions. The software development kit

(SDK) provided by your frame grabber manufacturer contains the function calls needed to

initialize your frame grabber and acquire images.

Technical Support

Although we have attempted to make this manual as complete as possible, we realize that

there are always additional unanswered questions, as well as unique situations not covered

in this booklet. Rad-icon is committed to providing excellent customer service and

technical support for all of our products. After all, your success is our business.

For technical assistance with the ShadoCam Imaging Library or your Shad-o-Box camera

please e-mail your questions to support@rad-icon.com, or contact our customer service

department (8 am to 5 pm Pacific Time) at 408-486-0886. Please be prepared to give a

detailed description of your problem.

For the latest contact information, data sheets and application notes please visit our web site

at http://www.rad-icon.com.

2

2. Installation

Installation of the ShadoCam Imaging Library is as simple as double-clicking on the self-

extracting archive (Scilib20.exe) on the installation disk. The installation program will

create a folder called "ScImgLib" (in your "C:\Program Files" directory by default). The

following files will be copied to this folder:

Scilib20.dllSIL run-time library

License.txt....................................SIL end-user license agreement

Readme.txtinstallation and release information

ScManual.pdf...............................this manual in PDF format

\Include\Scilib20.h.......................SIL C++ header file

\Lib\Scilib20.libSIL C++ link library

The following camera configuration files will be installed in the "\CamFiles" subdirectory:

\PXD1000\SB####PX.cam.........for the Imagenation PXD1000 frame grabber

\DT3157\SB####DT.camfor the Data Translation DT3157 frame grabber

\Meteor2\SB####M2.dcf.............for the Matrox Meteor-II/Digital frame grabber

These camera configuration files have been tested with their respective frame grabbers and

provide a starting point for configuring your own software. Please contact our customer

service department if you need support for additional frame grabbers not listed above.

To start using the SIL functions, first make sure that your frame grabber SDK is installed.

Check that your Shad-o-Box camera and your frame grabber are running correctly using

ShadoCam or another suitable application. Make sure that the paths for the header file and

link library are accessible to your compiler or development system. Finally, copy the run-

time library (.DLL) file into your application directory or to the "C:\Windows\System"

directory.

3

3. Developing an Application

This section describes the basic steps necessary to perform an imaging sequence. It is

intended as an overview, from a software development perspective, of the image

acquisition process. Many of the functions that are used to acquire an image into the PC are

frame grabber specific and differ from one model to another. Please refer to your frame

grabber SDK documentation for details.

Initialize the Frame Grabber

The first step in acquiring an image is to start up the frame grabber. The frame grabber

needs to be initialized and set up for the camera connected to it – in this case a Shad-o-Box

x-ray camera. The initialization typically tells the frame grabber what kind of image to

expect from the camera in terms of image size, pixel size, timing and more. Your frame

grabber SDK documentation contains examples for the exact sequence of steps that are

required here (the calls are different for each frame grabber – see Appendix C for some

examples). Many frame grabbers use camera configuration files to feed them the necessary

setup information. These files can be either read from disk or programmed directly into

your application using a header file.

Some camera configuration files for specific frame grabber models are included with the

SIL. They can provide a starting point for setting up the frame grabber and camera for your

particular application.

Acquire an Image

Once the frame grabber and memory buffers are set up, you can acquire an image. The

Shad-o-Box camera is up and running as soon as you supply power. The next step is to arm

the frame grabber (if required), and then provide a software or hardware trigger to start the

image acquisition. The frame grabber will usually wait for the next available image from

the camera and transfer it into the image buffer. Once the image has been transferred, it is

available for further processing.

4

Perform Image Calibrations

Once the image is acquired, you can perform various image calibrations to adjust the image

quality. This is where the ShadoCam Imaging Library comes in. Rad-icon has developed

several image processing functions that are specially optimized to calibrate Shad-o-Box

images. Depending on the application, it may not be necessary to use all of these functions,

but in general they are helpful in maximizing the image quality from your Shad-o-Box

camera.

Pixel Deinterlacing

Pixel deinterlacing is a required step for all Shad-o-Box cameras except for the Shad-o-Box

512. In the multi-channel Shad-o-Box cameras, the individual channels are scanned in

parallel and multiplexed for transmission to the PC. This maximizes the camera's frame rate

without requiring additional bulky interface cables for the extra channels. It also means that

the information that arrives in the image buffer is scrambled. The pixel deinterlacing

function in the ShadoCam Imaging Library quickly unscrambles the image buffer so that all

the pixels are in the correct place in the image.

Offset Correction

Offset correction is an optional image processing step that corrects for small variations in

the dark image from the Shad-o-Box camera. Without light or x-rays, the only signal

coming from the camera is an offset voltage and dark current. Although small, both of these

can vary on a pixel-by-pixel level. The offset correction algorithm requires an offset image

(typically an averaged dark image) to subtract from subsequent frames. The offset image

should be refreshed frequently to account for dark current changes due to temperature

variations, or when changing integration (exposure) times.

Gain Correction

Gain correction is a highly recommended processing step that corrects the image for

variations in the intensity of the x-ray beam and for gain variations within the Shad-o-Box

camera. The gain correction algorithm normalizes each acquired image based on a stored

flat-field exposure (the gain image), by dividing each pixel value by its corresponding gain

5

image value and then multiplying by the mean value of the gain image. Small local

variations in image contrast often become visible only after the raw image has been

processed with the gain correction algorithm.

The gain image should be averaged over 10-20 frames in order to minimize any increase in

image noise resulting from the gain correction. If the detector position and source kVp are

constant, it may be possible to reuse the gain image over many imaging sessions.

Pixel Correction

Pixel correction is an optional image processing step that can correct for missing or "dead"

pixels in the image. For more detailed information about the pixel correction algorithms

provided with the SIL please refer to the ScPixelCorrection function description.

Camera Control Functions

Camera control functions such as exposure control, camera reset and sparse sampling

(binning) can be accessed through the frame grabber interface. An on-board pulse generator

or counter/timer chip is supplied with most frame grabbers to control camera exposure

times. Two RS-422 I/O lines are required to control the camera reset and binning functions.

Please refer to your frame grabber manual for instructions on how to utilize these controls.

When first initializing the imaging system, it is important to establish synchronization

between the Shad-o-Box camera and the frame grabber. The camera will usually start up in

continuous mode. We recommend initializing the interface by supplying a few External

Frame Sync pulses through the frame grabber interface or the external input connector on

the camera. Once the synchronization between the camera and the frame grabber has been

established, you can switch back to continuous mode by setting the External Frame Sync

lines high.

6

4. ShadoCam Library

This section contains a complete function reference for the ShadoCam Imaging Library.

The function calls have been developed to work on 32-bit Windows operating systems, and

are intended for C++ applications with the provided header file.

Data Types

Image buffers for use with the SIL should be of signed short integer type (two bytes per

pixel). The buffers are assumed to contain row-sequential pixel data, with the first pixel at

the location indicated by the buffer pointer. Function return values (error codes) are also of

signed short integer type. Other parameters vary as indicated in the function definition.

The following table gives the sizes of the various data types that are used by the SIL:

Type Size

char 8 bits

short, unsigned short 16 bits

int, unsigned int 32 bits

BOOL 8 bits

all pointers (int*, char*, etc.) 32 bits

Constants

The SIL contains several defined constants:

SCMAXPIXMAPSIZE the maximum number of entries in the pixel map array (2000)

SCMAXPIXMAPFILESIZE the maximum pixel map file size (20 kB)

SCMAXERRORMESSAGE the maximum error message length (128 characters)

Additional defined constants are listed on the following pages. Please refer to the C header

file if you need to see the actual definitions.

7

ScDeinterlace

short ScDeinterlace(short *imgBuf, unsigned int nBufSize, unsigned int nWidth,
unsigned int nHeight, unsigned short CamType, BOOL
bGapSpace);

Return Value

0 if successful; error code on failure

Parameters

imgBuf pointer to an image buffer of 16-bit pixels

nBufSize width of image buffer (number of pixels per row)

nWidth width of image (number of columns)

nHeight height of image (number of rows)

CamType the camera type that was used to acquire the image to be deinterlaced; see

Appendix A for a list of valid camera types (e.g. SCCAMTYPE_1024A).

bGapSpace flag to determine whether a two-pixel gap should be inserted into the
deinterlaced image to account for the space between image sections

Description

Deinterlaces the pixel data in the image buffer (imgBuf). The CamType argument

determines which deinterlacing algorithm is used to rearrange the pixel data. Shad-o-Snap

cameras do not require deinterlacing, but this function can be used to insert a gap space into

the acquired image. nWidth and nHeight specify the actual image dimensions. The

parameter nBufSize may be larger than nWidth to account for additional pixel padding in

the buffer at the end of each row.

8

Shad-o-Box 1024

This is the original version of the Shad-o-Box camera. It contains two 511-column by

1022-row imagers with a 100-200 µm gap in between. Each row is transmitted as

alternating pixels from the left and right channels of the camera. Although these cameras

are no longer manufactured, the deinterlacing algorithm is included to support these older

models.

If bGapSpace is FALSE, the image data from the two sections are placed side-by-side, and

two blank columns are inserted at the left and right edges of the image. If bGapSpace is

TRUE, two blank columns are inserted in the center of the image. These columns should be

entered into the Pixel Map and filled in using the appropriate pixel correction algorithm

(see ScPixelCorrection).

1 2 35
1
2

5
1
3

5
1
4

5
0
9

5
1
1

1
0
2
1

1
0
2
2

1 2 3

5
1
0

5
1
0

5
1
1

5
1
2

5
1
3

5
1
4

1
0
2
2

1
0
2
1

1
0
2
0

... ...

... ...

incoming pixels from Shad-o-Box 1024

pixel order after deinterlacing - no gap space

Shad-o-Box 1024

ch. 0

511 cols

5
0
91 2

5
1
0

5
1
1

5
1
2

5
1
3

5
1
4

1
0
2
2

1
0
2
1... ...

pixel order after deinterlacing - with two-pixel gap
3

1
0
2
0

5
0
9

1
0
2
0

ch. 1

511 cols

9

Shad-o-Box 1024A

The newer version of the Shad-o-Box camera contains two 512-column by 1024-row

imagers with a 100 µm gap in between. Each row is transmitted as alternating pixels from

the left and right channels of the camera. If bGapSpace is FALSE, the image data from the

two sections are placed side-by-side. There are no blank columns to fill in. If bGapSpace

is TRUE, two blank columns are inserted in the center of the image. The left-most column

of the left-hand (channel 0) device and the right-most column of the right-hand (channel 1)

device are discarded in order to keep the image width constant at 1024 columns.

1 2 35
1
3

5
1
4

5
1
5

5
1
0

5
1
1

5
1
2

1
0
2
2

1
0
2
3

1
0
2
4

1 2 3

5
1
0

5
1
1

5
1
2

5
1
3

5
1
4

5
1
5

1
0
2
4

1
0
2
3

1
0
2
2

...

...

incoming pixels from Shad-o-Box 1024A

pixel order after deinterlacing - no gap space

Shad-o-Box 1024A

ch. 0

512 cols

5
1
02 3

5
1
1

5
1
2

5
1
3

5
1
4

5
1
5

1
0
2
3

1
0
2
2... ...

pixel order after deinterlacing - with two-pixel gap
4

1
0
2
1

ch. 1

512 cols

10

Shad-o-Box 1536

The Shad-o-Box 1536 camera contains three 512-column by 1024-row imagers separated

by two 100 µm gaps. The data from the three camera channels are interlaced together with

a fourth dummy channel. If bGapSpace is FALSE, the image data from the three sections

are placed side-by-side. There are no blank columns to fill in. If bGapSpace is TRUE, two

blank columns are inserted between each of the image sections. The two left-most columns

of the left-hand (channel 0) device and the two right-most columns of the right-hand

(channel 2) device are discarded in order to keep the image width at 1536 columns.

Note that the image buffer for the Shad-o-Box 1536 must be at least 2048 pixels wide.

1 2 5
1
2

1 2 3

5
1
1

...

...

incoming pixels from Shad-o-Box 1536

pixel order after deinterlacing - no gap space

Shad-o-Box 1536

3 4 ...

pixel order after deinterlacing - with two-pixel gap

ch. 0

512 cols

*dummy pixels

5
1
3

5
1
4

...
1
0
2
3

1
0
2
4

* * ... * *1
0
2
5

1
0
2
6

...
1
5
3
5

1
5
3
6

512 cols

ch. 1 ch. 2

512 cols

5
1
1

5
1
2

5
1
3

5
1
4

1
5
3
6

1
5
3
5

1
5
3
4...

5
1
1

5
1
2

5
1
3

5
1
4

... ...

1
0
2
4

1
0
2
3

1
0
2
6

1
0
2
5

...

1
0
2
4

1
0
2
3

1
0
2
6

1
0
2
5

1
5
3
4

1
5
3
3

11

Shad-o-Box 2048

The Shad-o-Box 2048 camera contains four 512-column by 1024-row imagers separated by

three 100 µm gaps. The data from the four camera channels are interlaced together in the

same format as for the Shad-o-Box 1536. If bGapSpace is FALSE, the image data from

the four sections are placed side-by-side. There are no blank columns to fill in. If

bGapSpace is TRUE, two blank columns are inserted between each of the image sections.

The three left-most columns of the left-hand (channel 0) device and the three right-most

columns of the right-hand (channel 3) device are discarded in order to keep the image width

at 2048 columns.

1 2 ...

incoming pixels from Shad-o-Box 2048

pixel order after deinterlacing - no gap space

Shad-o-Box 2048

4 5 ...

pixel order after deinterlacing - with two-pixel gap

ch. 0

512 cols

ch. 1

512 cols

ch. 2

512 cols

ch. 3

512 cols

1 2 5
1
2

5
1
1

...
5
1
3

5
1
4

...
1
0
2
3

1
0
2
4

...
1
0
2
5

1
0
2
6

...
1
5
3
5

1
5
3
6

5
1
1

5
1
2

5
1
3

5
1
4

2
0
4
8

2
0
4
7...

5
1
3

5
1
2

2
0
4
5

2
0
4
4

1
5
3
7

1
5
3
6

1
5
3
5

1
0
2
6

1
0
2
5

1
0
2
4

1
0
2
3

1
5
3
8

1
5
3
7

1
5
3
7

1
5
3
8

2
0
4
7

2
0
4
8

1
5
3
6

1
0
2
5

1
0
2
4

12

Shad-o-Box 4K

The Shad-o-Box 4K camera contains eight 512-column by 1024-row sensors arranged in a

2x4 matrix. The imagers are separated by one horizontal and three vertical 100 µm gaps.

The data from the eight camera channels are interlaced together as shown in the figure

below. Note that the upper row of sensors (ch. 4-7) reads out in the opposite direction from

the bottom row.

If bGapSpace is FALSE, the image data from the eight sections are placed side-by-side.

There are no blank rows or columns to fill in. If bGapSpace is TRUE, two blank columns

or rows are inserted between each of the image sections. The three left-most columns of the

left-hand (channel 0) device and the three right-most columns of the right-hand (channel 3)

device are discarded in order to keep the image width at 2048 columns.

1 2 ...

incoming pixels from Shad-o-Box 4K

pixel order after deinterlacing - no gap space

Shad-o-Box 4K

4 5 ...

pixel order after deinterlacing - with two-pixel gap

ch. 6
512
cols

ch. 5
512
cols

ch. 4
512
cols

1 5
1
2

2
5
1
3

1
5
3
6

...
1
0
2
4

1
0
2
5

...
1
0
2
5

1
0
2
4

...
1
5
3
6

5
1
3

5
1
1

5
1
2

5
1
3

5
1
4

2
0
4
8

2
0
4
7...

5
1
3

5
1
2

2
0
4
5

2
0
4
4

1
5
3
7

1
5
3
6

1
5
3
5

1
0
2
6

1
0
2
5

1
0
2
4

1
0
2
3

1
5
3
8

1
5
3
7

1
5
3
7

5
1
2

2
0
4
8

1

1
5
3
6

1
0
2
5

1
0
2
4

ch. 0
512
cols

ch. 7
512
cols

ch. 1
512
cols

ch. 2
512
cols

ch. 3
512
cols

1
5
3
7

2
0
4
8

13

Image Size

The size of the image buffer must be at least nBufSize * nHeight * 2 bytes. No overflow

checking is performed. If the buffer size is set too small, the memory space will be

contaminated and unpredictable results may occur. The deinterlacing algorithm assumes a

standard, row-sequential image buffer with nBufSize * 2 bytes per row. The image buffer

can be padded with dummy pixels by specifying a nBufSize parameter that is larger than

nWidth.

If the buffer width nBufSize is less than the image nWidth, the function will return with an

SCERROR_INVALIDBUFFERWIDTH error. If either nWidth or nHeight are zero, the

function will return with an SCERROR_INVALIDIMAGESIZE error.

The deinterlacing algorithm expects the image width to be the standard image width

defined for each camera type (see Appendix A). If a different-sized image width is passed

to the ScDeinterlace function, it will still process the image but return with error code

SCERROR_INVALIDIMAGEWIDTH. Depending on the value passed, the resulting image

may not be properly deinterlaced.

14

ScOffsetCorrection

short ScOffsetCorrection(short *imgBuf, short *ofstBuf, unsigned int nWidth,
unsigned int nHeight);

Return Value

0 if successful; error code on failure

Parameters

imgBuf pointer to an image buffer of 16-bit pixels

ofstBuf pointer to an image buffer that contains the offset image data

nWidth width of image buffer (number of columns)

nHeight height of image buffer (number of rows)

Description

Performs an offset correction on the pixel data in the image buffer (imgBuf). For each pixel

value in the image buffer, the corresponding pixel value in the offset image buffer

(ofstBuf) is subtracted. The result, which may contain negative pixel values, is returned to

the image buffer.

The size of both image buffers must be at least nWidth * nHeight * 2 bytes. No overflow

checking is performed. If the buffer size is set too small, the memory space will be

contaminated and unpredictable results may occur. If either nWidth or nHeight are zero,

the function will return with an SCERROR_INVALIDIMAGESIZE error.

15

ScGainCorrection

short ScGainCorrection(short *imgBuf, short *gainBuf, unsigned int nWidth,
unsigned int nHeight, short nMean);

Return Value

0 if successful; error code on failure

Parameters

imgBuf pointer to an image buffer of 16-bit pixels

gainBuf pointer to an image buffer that contains the gain image data

nWidth width of image buffer (number of columns)

nHeight height of image buffer (number of rows)

nMean mean value to normalize image to; if zero, mean value is calculated from
the gain image data

Description

Performs a gain correction on the pixel data in the image buffer (imgBuf). Each pixel value

in the image buffer is divided by the corresponding pixel value in the gain image buffer

(gainBuf), and then multiplied by nMean. The result, rounded to the nearest integer value,

is returned to the image buffer.

If the normalization constant nMean is zero, the function will calculate its own constant by

computing the average of all the pixels in the gain image. This will add processing

overhead and should only be done if the computation time is not critical.

A zero pixel value in the gain image will result in a zero pixel value in the returned image.

Very small pixel values in the gain image may result in large, possibly negative values in

the returned image.

The size of both image buffers must be at least nWidth * nHeight * 2 bytes. No overflow

checking is performed. If the buffer size is set too small, the memory space will be

contaminated and unpredictable results may occur. If either nWidth or nHeight are zero,

the function will return with an SCERROR_INVALIDIMAGESIZE error.

16

ScPixelCorrection

short ScPixelCorrection(short *imgBuf, unsigned int nWidth, unsigned int nHeight,
PIXMAPENTRY *pixMap, unsigned short nPixMapCount,
unsigned short pcMethod);

Return Value

0 if successful; error code on failure

Parameters

imgBuf pointer to an image buffer of 16-bit pixels

nWidth width of image buffer (number of columns)

nHeight height of image buffer (number of rows)

pixMap pointer to the pixel map (an array of PIXMAPENTRY data structures)

nPixMapCount number of entries in the pixel map array

pcMethod pixel correction method to be applied to the correction:

SCMETHOD_MEAN simple mean of adjacent pixels

SCMETHOD_INTERPOLATE interpolate across line defects

SCMETHOD_GRADIENT interpolate along minimum gradient

Description

Applies pixel correction to the data in the image buffer (imgBuf), based on the entries in

the pixel map array. An interpolation algorithm is used to estimate the missing pixel value

for each pixel, row or column identified in the pixel map. The pixel is then replaced with

the new value in the image buffer.

Single pixel defects are repaired by replacing the pixel value with the average of the

surrounding pixels. The pcMethod flag identifies which pixel correction method to use for

correcting row and column defects. The INTERPOLATE method uses straight interpolation

between adjacent pixels in a direction perpendicular to the row or column to be repaired.

The GRADIENT method, on the other hand, identifies the direction along which the image

gradient (slope in gray levels) is at a minimum, and then interpolates along that direction.

17

Please refer to our application note AN03 "Guide to Image Quality and Pixel Correction

Methods" for more details on pixel correction methods.

The size of the image buffer must be at least nWidth * nHeight * 2 bytes. No overflow

checking is performed. If the buffer size is set too small, the memory space will be

contaminated and unpredictable results may occur. Pixel map entries for pixel positions

outside the image buffer space are ignored. If either nWidth or nHeight are zero, the

function will return with an SCERROR_INVALIDIMAGESIZE error. If the pcMethod

parameter does not match one of the pixel correction methods listed above, the function

will return with an SCERROR_INVALIDPCMETHOD error.

See the ScReadPixMap function for a description of the pixel map data array and the

PIXMAPENTRY data structure.

18

ScFixPixel

void ScFixPixel(short *imgBuf, unsigned int nWidth, unsigned int nHeight, int nCol,
int nRow, int nMethod, int nMask);

Return Value

none

Parameters

imgBuf pointer to an image buffer of 16-bit pixels

nWidth width of image buffer (number of columns)

nHeight height of image buffer (number of rows)

nCol column number of pixel to be repaired; must be greater than or equal to 0
and less than nWidth

nRow row number of pixel to be repaired; must be greater than or equal to 0 and
less than nHeight

nMethod pixel correction method to be applied:

SCMETHOD_MEAN simple mean of adjacent pixels

SCMETHOD_INT_HOR interpolate horizontally across defect

SCMETHOD_INT_VERT interpolate vertically across defect

SCMETHOD_GRAD_HOR interpolate horizontally along min. gradient

SCMETHOD_GRAD_VERT interpolate vertically along min. gradient

nMask defect mask of surrounding pixels; only the least significant eight bits are
used

Description

Repairs a specific pixel in an image using one of five correction methods. The function

returns without processing any image data if the pixel specified by nCol and nRow is not

within the image dimensions given by nWidth and nHeight, or if nMethod is not one of

the correction methods listed above. It does not return any error codes.

This function is called by ScPixelCorrection to perform the actual pixel repair. It is

included here only for completeness and typically wouldn't be called directly.

19

ScReadPixMap

short ScReadPixMap(char *filePath, PIXMAPENTRY *pixMap, int *numEntries);

Return Value

0 if successful; error code on failure

Parameters

filePath pointer to a null-terminated string that specifies the file name of the pixel
map file to open

pixMap pointer to the pixel map (an array of PIXMAPENTRY data structures)

numEntries variable to receive the number of pixel map entries read from the file

Description

Reads a "ShadoCam Pixel Map File" from disk. This file is shipped with the Shad-o-Box

camera and contains the factory-calibrated pixel map that identifies any defective pixels,

rows or columns in the image. The file data is transferred to the pixel map array, which is

used in subsequent calls to ScPixelCorrection to repair these pixels.

The pixel map is stored as an array of PIXMAPENTRY structures, defined as follows:

typedef struct {
 char type; // defect type: 'P'ixel, 'R'ow or 'C'olumn
 unsigned short x1; // x (column) coordinate or start of column range
 unsigned short x2; // end of column range
 unsigned short y1; // y (row) coordinate or start of row range
 unsigned short y2; // end of row range
 unsigned short mask; // correction mask to identify surrounding defects
 char flag; // preferred correction method
} PIXMAPENTRY;

The type field identifies whether the pixel map entry refers to a single pixel, a row or a

column. The coordinates of the pixel, row or column are given by the x1and y1 fields. In

addition, the x2 and y2 fields are used to identify the range of a partial row or column

defect. The mask field specifies the correction mask for surrounding pixels (see

ScCalcPixMapMask for more details). A flag may be used to specify a particular

correction method.

20

Prior to calling ScReadPixMap, you need to initialize the pixMap pointer and allocate

enough memory to hold the pixel map array. You can use the malloc() or GlobalAlloc()

functions to do this:

pixMap = (PIXMAPENTRY*)malloc(SCMAXPIXMAPSIZE * sizeof(PIXMAPENTRY));

The maximum size of the pixel map array is about 24 kB, which holds up to 2000 pixel

map entries. You can allocate less memory if you know for sure that your pixel map has

less than 2000 entries. However, the ScReadPixMap function will keep writing to the

pixel map array up to the SCMAXPIXMAPSIZE limit if it finds additional entries in the file.

Remember to free the heap memory when you no longer need it.

After reading the pixel map file, ScReadPixMap calls the ScCalcPixMapMask function to

fill in the mask field for each PIXMAPENTRY structure in the pixel map array. The total

number of pixel map entries that were read from the pixel map file is placed into the

numEntries variable before the function returns.

If it is unable to open the specified pixel map file, the function will return with an

SCERROR_INVALIDFILEPATH error. If the file size of the specified pixel map file is

either zero or greater than SCMAXPIXMAPFILESIZE, or if certain keywords in the file

were not found, the function will return with an SCERROR_INVALIDPIXMAPFILE error.

An SCERROR_PIXMAPSYNTAX error will be returned if there was a syntax error detected

in reading the pixel map file. The lines containing any errors are ignored.

21

ScCalcPixMapMask

short ScCalcPixMapMask(PIXMAPENTRY *pixMap, unsigned short nPixMapCount);

Return Value

0 if successful; error code on failure

Parameters

pixMap pointer to the pixel map (an array of PIXMAPENTRY data structures)

nPixMapCount number of entries in the pixel map array

Description

Calculates the mask field for each entry in the pixel map array. The mask field identifies

which, if any, of the pixels surrounding the one being repaired have been identified as

defective. Only "good" pixels are used in the pixel correction algorithms.

The mask field is an 8-bit register in which each bit corresponds to one of the nearest

neighbor pixels, starting at the upper left with the least significant bit and proceeding in a

counter-clockwise direction:

For example, if the pixel to the left is defective, the mask value would be 2 (0x02). If the

entire column to the right is defective, the mask value would be 112 (0x70). For row and

column entries, the mask field identifies adjacent defective rows or columns in the pixel

map. Individual pixel entries should always be listed first in the pixel map so that they are

repaired before the rows and columns are processed. The row and column correction

algorithms can then assume that all adjacent pixels are "good".

For the pixels along the edge of an image, the "missing" pixels outside the image boundary

are not included in the mask field. The image boundary checking is done instead in the

ScPixelCorrection function.

bit7

bit1

bit2

bit0 bit6

 X

bit3

bit5

bit4

22

ScErrorMessage

short ScErrorMessage(short errCode, char *errMessage);

Return Value

error code; 99 if error code is not valid

Parameters

errCode the error code to be deciphered

errMessage pointer to a character buffer to receive the error message text

Description

Looks up the error code provided and returns the corresponding text error message as a

null-terminated string. The maximum length of the error message is defined by the

SCMAXERRORMESSAGE parameter. See Appendix B for a listing of error messages.

23

Appendices

A. Camera Types

The following camera types are defined in the ShadoCam Imaging Library:

Camera Type no. of
channels

default
image
width

image
buffer
width

default
image
height

SCCAMTYPE_512 one 512 512 1024

SCCAMTYPE_1024 two 1024 1024 1022

SCCAMTYPE_1024A two 1024 1024 1024

SCCAMTYPE_1536 three 1536 2048 1024

SCCAMTYPE_2048 four 2048 2048 1024

SCCAMTYPE_4K eight 2048 4096 2000

SCCAMTYPE_SNAP1024 two 1024 1024 1000

SCCAMTYPE_SNAP2048 four 2048 2048 1000

SCCAMTYPE_SNAP1K eight 1024 1024 1000

SCCAMTYPE_SNAP4K eight 2048 2048 2000

SCCAMTYPE_CUSTOM one n/a n/a n/a

24

B. Error Codes

The following error codes are defined in the ShadoCam Imaging Library:

SCERROR_NOERROR No error has occurred.

SCERROR_INVALIDIMAGESIZE The image size (nWidth x nHeight) is invalid.
Typically this means that either the nWidth or
nHeight argument passed to the function was 0.

SCERROR_INVALIDCAMTYPE The CamType argument passed to the function is
not one of the supported camera types.

SCERROR_INVALIDIMAGEWIDTH The nWidth argument passed to the ScDeinterlace
function does not match the default image width for
the camera type given by the CamType argument.

SCERROR_INSUFFICIENTMEMORY There is not enough memory available to perform
the requested function.

SCERROR_INVALIDBUFFERWIDTH The image buffer width (nBufSize) argument
passed to the ScDeinterlace function is less than
the image width parameter nWidth.

SCERROR_INVALIDFILEPATH An error occurred while opening the pixel map
file specified by the filePath argument. This may
be due to a sharing violation, or because the path
name does not point to a valid file.

SCERROR_INVALIDPIXMAPFILE The file specified by the filePath argument is not
a valid "ShadoCam Pixel Map File". This could
be because certain keywords are misspelled or
missing, or because the file is either empty or too
large.

SCERROR_PIXMAPSYNTAX There was a syntax error detected in reading the
pixel map file. The lines containing any errors are
ignored.

SCERROR_INVALIDPCMETHOD The pcMethod argument passed to the function is
not one of the supported pixel correction methods.

SCERROR_INVALIDERRCODE The error code passed to the ScErrorMessage
function does not match one of the error codes
listed in this appendix.

25

C. Program Listings

The following is a sample program listing for a Win32 console application to initialize the

PXD1000 frame grabber, acquire a single image and save it to disk:

#include <windows.h>
#include <stdio.h>
#include <conio.h>
#include "pxd.h"
#include "iframe.h"
#include "scimglib.h"

main()
{
PXD pxd;
FRAMELIB framelib;
long hFG;
short* lpFrameBase;
FRAME* pFrame;
CAMERA_TYPE* camType;

int i;
const long len = 65536;
unsigned short nLUT[len];
char filename[] = "TestPXD.raw";
char camFile[]="C:\\pxd\\Cameras\\SB1024PX.CAM";
unsigned int nWidth = 1024; // width of Shad-o-Box image (columns)
unsigned int nHeight = 1024; // height of Shad-o-Box image (rows)

// initialize the Imagenation libraries
if (!imagenation_OpenLibrary("pxd_32.dll", &pxd, sizeof(PXD))) {
 MessageBox(NULL, "Frame grabber library not loaded.", "TestPXD",
 MB_ICONERROR);
 return 0; }
if (!imagenation_OpenLibrary("frame_32.dll", &framelib, sizeof(FRAMELIB))) {
 MessageBox(NULL, "Frame library not loaded.", "TestPXD",
 MB_ICONERROR);
 return 0; }

// request access to frame grabber
if (!(hFG = pxd.AllocateFG(-1))) {
 MessageBox(NULL, "PXD frame grabber not found.", "TestPXD",
 MB_ICONERROR);
 imagenation_CloseLibrary(&framelib);
 imagenation_CloseLibrary(&pxd);
 return 0; }

// initialize camera configuration
if (!(camType = pxd.LoadConfig(camFile))) {
 MessageBox(NULL, "Camera configuration not loaded.", "TestPXD",
 MB_ICONERROR);
 pxd.FreeFG(hFG);
 imagenation_CloseLibrary(&framelib);
 imagenation_CloseLibrary(&pxd);

26

 return 0; }
pxd.SetCameraConfig(hFG, camType);
pxd.ContinuousStrobes(hFG, TRUE); // turn on camera frame sync

// initialize input LUT to shift image data down by two bits
for (i = 0; i < len; i++) nLUT[i] = i>>2;
pxd.SetInputLUT(hFG, 16, 0, 0, len, nLUT);

// set up image destination buffer
if (!(pFrame = pxd.AllocateBuffer (pxd.GetWidth(hFG), pxd.GetHeight(hFG),
 PBITS_Y16))) {
 MessageBox(NULL, "Unable to create image buffer.", "TestPXD",
 MB_ICONERROR);
 pxd.FreeFG(hFG);
 imagenation_CloseLibrary(&framelib);
 imagenation_CloseLibrary(&pxd);
 return 0; }

// create pointer to image buffer
// note: the configuration file sets up the image buffer to contain
// an extra column to the left and right of the actual image
lpFrameBase = (short *)framelib.FrameBuffer(pFrame);
lpFrameBase++; // point to first pixel in image

// wait for user input, then grab next available image
printf("Press any key to start image acquisition...");
while (!kbhit());
pxd.Grab(hFG, pFrame, 0);

// deinterlace image and save to disk
ScDeinterlace(lpFrameBase, framelib.FrameWidth(pFrame), nWidth, nHeight,
 SCCAMTYPE_1024A, FALSE);
framelib.WriteBin(pFrame, filename, 1);

// release frame grabber resources
framelib.FreeFrame(pFrame);
pxd.FreeConfig(camType);
pxd.FreeFG(hFG);
imagenation_CloseLibrary(&framelib);
imagenation_CloseLibrary(&pxd);

return 1;
}

27

The following is a sample program listing for a Win32 console application to initialize the

DT3157 frame grabber, acquire a single image and save it to disk:

#include <windows.h>
#include <stdio.h>
#include <conio.h>
#include "olwintyp.h"
#include "olfgapi.h"
#include "olimgapi.h"
#include "3157api.h"
#include "scimglib.h"

main()
{
OLT_APISTATUS Status;
HGLOBAL hDevList;
LPOLT_IMGDEVINFO lpDevList;
OLT_IMG_DEV_ID DtDevID;
OLT_FG_FRAME_ID DtFrameID;
OLT_FG_FRAME_INFO DtFrameInfo;
short* lpFrameBase;

HANDLE hFile;
char szAppName[] = "TestDT";
char filename[] = "TestDT.raw";
unsigned long nBytesWritten;
unsigned long nBytesToWrite;
int nNumDev, nOldVal, nFlag;
unsigned short nSource = 0;
unsigned int nActExp;
unsigned int nWidth = 1024; // width of Shad-o-Box image (columns)
unsigned int nHeight = 1024; // height of Shad-o-Box image (rows)
unsigned int nFirstCol = 4; // DT3157 skips 4 clocks at start of row
unsigned int nFirstRow = 0;

// Get the number of installed DT devices
printf("Searching for DT3157 frame grabber...");
Status = OlImgGetDeviceCount(&nNumDev);
if ((Status != OLC_STS_NORMAL) || (nNumDev == 0)) {
 MessageBox(NULL, "DT frame grabber not found.", szAppName, MB_ICONERROR);
 return 0; }

// Get an array of device info structures
hDevList = GlobalAlloc(GHND, nNumDev * sizeof(OLT_IMGDEVINFO));
if (!hDevList) {
 MessageBox(NULL, "Not enough memory for device list.", szAppName, MB_ICONERROR);
 return 0; }
lpDevList = (LPOLT_IMGDEVINFO)GlobalLock(hDevList);
if (!lpDevList) {
 GlobalFree(hDevList);
 MessageBox(NULL, "Can't lock memory for device list.", szAppName, MB_ICONERROR);
 return 0; }

lpDevList->StructSize = sizeof(OLT_IMGDEVINFO);
Status = OlImgGetDeviceInfo(lpDevList, nNumDev * sizeof(OLT_IMGDEVINFO));

28

if (Status != OLC_STS_NORMAL) {
 GlobalUnlock(hDevList);
 GlobalFree(hDevList);
 MessageBox(NULL, "Unable to get frame grabber info.", szAppName, MB_ICONERROR);
 return 0; }

// We'll assume the first device in the list is the DT3157 frame grabber. If more than
// one DT board is installed, we'd have to check the list for the correct device alias.

// Open the device and set it to 14-bit digital camera mode
printf("\nInitializing DT3157 frame grabber...");
Status = OlImgOpenDevice(lpDevList[0].Alias, &DtDevID);
if (Status != OLC_STS_NORMAL) {
 GlobalUnlock(hDevList);
 GlobalFree(hDevList);
 MessageBox(NULL, "Unable to initialize frame grabber.", szAppName, MB_ICONERROR);
 return 0; }
Dt3157SetDigitalCameraType(DtDevID, nSource, DT3157_DIGCAM_14BIT_INPUT);

// Set IO lines 4 & 5 high (camera CTRL1 and CTRL2 inputs)
Dt3157SetDigitalIOConfiguration(DtDevID, 0x30);
Dt3157SetDigitalIO(DtDevID, 0x30);

// Turn off sync sentinel
OlFgSetInputControlValue(DtDevID, nSource, OLC_FG_CTL_SYNC_SENTINEL, FALSE, &nOldVal);

// Get pixel clock flags and set to latch on falling edge
OlFgQueryInputControlValue(DtDevID, nSource, OLC_FG_CTL_CLOCK_FLAGS, &nOldVal);
nFlag = nOldVal & (0xFFFFFFFF ^ OLC_FG_CLOCK_EXT_ON_LO_TO_HI);
OlFgSetInputControlValue(DtDevID, nSource, OLC_FG_CTL_CLOCK_FLAGS, nFlag, &nOldVal);

// Get variable scan flags and set line enable to latch on rising edge
OlFgQueryInputControlValue(DtDevID, nSource, OLC_FG_CTL_VARSCAN_FLAGS, &nOldVal);
nFlag = nOldVal | OLC_FG_VS_LINE_ON_LO_TO_HI;
OlFgSetInputControlValue(DtDevID, nSource, OLC_FG_CTL_VARSCAN_FLAGS, nFlag, &nOldVal);

// Get variable scan flags and set frame enable to latch on rising edge
OlFgQueryInputControlValue(DtDevID, nSource, OLC_FG_CTL_VARSCAN_FLAGS, &nOldVal);
nFlag = nOldVal | OLC_FG_VS_FIELD_ON_LO_TO_HI;
OlFgSetInputControlValue(DtDevID, nSource, OLC_FG_CTL_VARSCAN_FLAGS, nFlag, &nOldVal);

// Set frame dimensions
OlFgSetInputControlValue(DtDevID, nSource, OLC_FG_CTL_FIRST_ACTIVE_PIXEL, nFirstCol,
 &nOldVal);
OlFgSetInputControlValue(DtDevID, nSource, OLC_FG_CTL_ACTIVE_PIXEL_COUNT, nWidth,
 &nOldVal);
OlFgSetInputControlValue(DtDevID, nSource, OLC_FG_CTL_TOTAL_PIX_PER_LINE, nWidth,
 &nOldVal);
OlFgSetInputControlValue(DtDevID, nSource, OLC_FG_CTL_FIRST_ACTIVE_LINE, nFirstRow,
 &nOldVal);
OlFgSetInputControlValue(DtDevID, nSource, OLC_FG_CTL_ACTIVE_LINE_COUNT, nHeight,
 &nOldVal);
OlFgSetInputControlValue(DtDevID, nSource, OLC_FG_CTL_TOTAL_LINES_PER_FLD, nHeight,
 &nOldVal);
OlFgSetInputControlValue(DtDevID, nSource, OLC_FG_CTL_FRAME_WIDTH, nWidth, &nOldVal);
OlFgSetInputControlValue(DtDevID, nSource, OLC_FG_CTL_FRAME_HEIGHT, nHeight, &nOldVal);

29

// Allocate frame buffer and get pointer
Status = OlFgAllocateBuiltInFrame(DtDevID, OLC_FG_DEV_MEM_VOLATILE,
OLC_FG_NEXT_FRAME, &DtFrameID);
if (Status != OLC_STS_NORMAL) {
 GlobalUnlock(hDevList);
 GlobalFree(hDevList);
 MessageBox(NULL, "Unable to allocate image memory.", szAppName, MB_ICONERROR);
 return 0; }
OlFgMapFrame(DtDevID, DtFrameID, &DtFrameInfo);
lpFrameBase = (short*)DtFrameInfo.BaseAddress;

// Set frame period timer and acquire one frame to activate. This establishes
// the initial synchronization between the camera and the frame grabber.
OlFgSetInputControlValue(DtDevID, nSource, OLC_FG_CTL_CLOCK_FREQ, 5000000, &nOldVal);
Dt3157EnableExposureMode(DtDevID, nSource, TRUE);
Dt3157SetExposure(DtDevID, nSource, 500000, 1, &nActExp); // 500ms exposure
OlImgSetTimeoutPeriod(DtDevID, 1, NULL);
OlFgAcquireFrameToDevice(DtDevID, DtFrameID);

// Turn frame period timer off and set timeout period to 15 seconds
Dt3157EnableExposureMode(DtDevID, nSource, FALSE);
OlImgSetTimeoutPeriod(DtDevID, 15, NULL);

// Wait for user input, then grab & deinterlace next available image
printf("\n\nPress any key to start image acquisition...");
while (!kbhit());
OlFgAcquireFrameToDevice(DtDevID, DtFrameID);
ScDeinterlace(lpFrameBase, nWidth, nWidth, nHeight, SCCAMTYPE_1024A, FALSE);

// Write image buffer to disk
nBytesToWrite = nWidth * nHeight * 2;
hFile = CreateFile(filename, GENERIC_WRITE, FILE_SHARE_READ, NULL, CREATE_ALWAYS,
 FILE_ATTRIBUTE_NORMAL, NULL);
if (hFile == INVALID_HANDLE_VALUE) {
 GlobalUnlock(hDevList);
 GlobalFree(hDevList);
 MessageBox(NULL, "Error writing image to file.", szAppName, MB_ICONERROR);
 return 0; }
WriteFile(hFile, lpFrameBase, nBytesToWrite, &nBytesWritten, NULL);
CloseHandle(hFile);

// Release frame grabber resources
GlobalUnlock(hDevList);
GlobalFree(hDevList);

return 1;
}

